- 결정 트리와 결정 트리 기반의 앙상블
- 배깅과부스팅
- 랜덤 포레스트, GBM
- GBM 의 기능을 더욱 향상 시킨 XGBoost, LightGBM
- 스태킹 모델
머신러닝 완벽가이드 for python 목차
▣ 4장: 분류
4.1. 분류(Classification)의 개요
4.2. 결정 트리
__결정 트리 모델의 특징
__결정 트리 파라미터
__결정 트리 모델의 시각화
__결정 트리 과적합(Overfitting)
__결정 트리 실습 - 사용자 행동 인식 데이터 세트
4.3. 앙상블 학습
__앙상블 학습 개요
__보팅 유형 - 하드 보팅(Hard Voting)과 소프트 보팅(Soft Voting)
__보팅 분류기(Voting Classifier)
4.4. 랜덤 포레스트
__랜덤 포레스트의 개요 및 실습
__랜덤 포레스트 하이퍼 파라미터 및 튜닝
4.5. GBM(Gradient Boosting Machine)
__GBM의 개요 및 실습
__GBM 하이퍼 파라미터 및 튜닝
4.6. XGBoost(eXtra Gradient Boost)
__XGBoost 개요
__XGBoost 설치하기
__파이썬 래퍼 XGBoost 하이퍼 파라미터
__파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측
__사이킷런 래퍼 XGBoost의 개요 및 적용
4.7. LightGBM
__LightGBM 설치
__LightGBM 하이퍼 파라미터
__하이퍼 파라미터 튜닝 방안
__파이썬 래퍼 LightGBM과 사이킷런 래퍼 XGBoost,
__LightGBM 하이퍼 파라미터 비교
__LightGBM 적용 - 위스콘신 유방암 예측
4.8. 분류 실습 - 캐글 산탄데르 고객 만족 예측
__데이터 전처리
__XGBoost 모델 학습과 하이퍼 파라미터 튜닝
__LightGBM 모델 학습과 하이퍼 파라미터 튜닝
4.9. 분류 실습 - 캐글 신용카드 사기 검출
__언더 샘플링과 오버 샘플링의 이해
__데이터 일차 가공 및 모델 학습/예측/평가
__데이터 분포도 변환 후 모델 학습/예측/평가
__이상치 데이터 제거 후 모델 학습/예측/평가
__SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가
4.10. 스태킹 앙상블
__기본 스태킹 모델
__CV 세트 기반의 스태킹
4.11. 정리
'Machine Learning > 머신러닝 완벽가이드 for Python' 카테고리의 다른 글
ch.5.2 단순 선형 S회귀를 통한 회귀의 이해 (0) | 2022.10.12 |
---|---|
ch.5.1 회귀 소개 (0) | 2022.10.12 |
ch4.10.1 스태킹 앙상블(실습) (0) | 2022.10.12 |
ch. 4.10 스태킹 앙상블 모델 (0) | 2022.10.12 |
스마트폰 구매 요인 분석(Decision Tree) (실습) (0) | 2022.10.12 |